
 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 1 of 65

Instrumind

ThinkComposer

Product Manual

Document Version:
Website:

E-Mail:

1.5.13.1127
http://www.instrumind.com
contact@instrumind.com

http://www.instrumind.com/
mailto:contact@instrumind.com

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 2 of 65

Content

Overview ...4

Context.. 4

Vision .. 4

Base Model ..5

Working Documents .. 5

Common Objects Properties ... 6

File Types .. 6

Compositions .. 7

Views ... 7

Ideas .. 8

Symbols .. 10

Shortcuts .. 11

Details .. 11

Attachments .. 13

Links... 13

Tables .. 13

Custom-Fields .. 13

Detail Designations .. 14

Concepts ... 15

Relationships ... 15

Directionality .. 16

Relationship Links ... 16

Connectors ... 17

Link-Roles ... 17

Markers ... 18

Complements .. 18

Legend .. 18

Info-Card .. 19

Image.. 19

Text .. 19

Stamp ... 19

Note ... 19

Callout .. 20

Quote ... 20

Group Region ... 20

Group Line .. 21

Domains .. 22

Idea Definitions ... 23

Properties ... 24

Brushes ... 25

Text-Formats .. 26

Symbol Format Definition .. 27

Details Definitions .. 30

Output-Templates .. 31

Concept Definitions ... 33

Relationship Definitions .. 34

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 3 of 65

Link-Role Definitions .. 34

Connectors Format Definition .. 35

Variant Definitions .. 35

Marker Definitions .. 35

Table-Structure Definitions ... 36

Base Tables ... 38

External Languages ... 38

Application Guide .. 39

Setup ... 39

Requirements ... 39

Install and Uninstall .. 39

Version Update .. 39

License Activation .. 39

User Interface .. 40

Main Window .. 40

Working with Compositions .. 42

Working with diagram Views .. 43

Editing Symbols .. 43

Creating Concepts .. 45

Creating Relationships.. 45

Extending or Modifying Relationships .. 46

Converting Ideas .. 46

Assigning Markers to Ideas .. 47

Creating Complements ... 47

Creating Shortcuts .. 47

Selection, Pan and Zoom .. 47

Reporting .. 48

Composition's Report ... 48

Appendix A: Template language ... 49

Control markup ... 49

Output markup .. 50

Filters .. 50

Tag markup ... 53

Appendix B: Composition Information Model .. 55

Classes Diagrams ... 55

Associations .. 55

Inheritance Hierarchy.. 56

Special cases: Custom Fields, Details and Table data access .. 57

Specification of Model Classes .. 58

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 4 of 65

Overview

Welcome to ThinkComposer!

This manual will introduce you about the conception of the product and its management. It is divided in two

main parts: First, the Base Model part, which describes the documents and the rich-content objects you create,

plus their meaningful typification. And second, the Application Guide part, about the program components, its

behavior and how to take advantage of its features.

Context

The ThinkComposer product is created in a context encompassing the next set of factors:

- Intended Users: Professionals, academic people, students and any person or teamwork who are used to

visual tools or require graphic means to do their job.

- Work performed: Intellectual discovery or creation, research, management activities, analysis of

problems, design of solutions, organization of ideas, knowledge representation or others alike.

- What they need to show, store and share:

o Symbols, connectors, boundaries and their visual styles.

o The meaning (semantics) of these graphic objects.

o Detailed and structured information, plus attachments.

o Multiple perspectives and levels of depth, not only a flat main view.

Vision

ThinkComposer enables its users in the creation of a new kind of Concept Maps, Mind Maps, Models or general

purpose Diagrams, which provide enhancements over classic implementations:

- Composability: Each object (node, symbol or idea) can be composed of a whole diagram within it. This

way, users can go beyond the initial view and reach multiple levels/layers of expression.

- Rich-Content: Each object can have multiple details, being them text, images, attached files, external

links or structured information (custom-fields and tables).

- Meta-Definitions: The content of the diagrams (ideas/nodes, their connections and details) are based

on particular descriptors which typify, delineate and rule their appearance, information and behavior.

With the provided features, ThinkComposer can be adapted to change and evolve together with the specialized

business/field of its users.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 5 of 65

Base Model

Working Documents

ThinkComposer bases its work on two main document types: Compositions and Domains. A Composition

contains information belonging to a particular business or field of knowledge (user's world), and a Domain

defines the meaning of that particular area of interest.

Multiple Compositions can be defined by one Domain. In the next example a “Business Process” Domain serves

as the basis for three Compositions describing the processes of some departments in a company.

Documents of both types are stored in their own file types and can live separately. That is because a

Composition file also contains the base Domain within it. In the other hand, Domains can exist alone or include a

Composition, for optional use as Template, in the creation of new Compositions.

"Business
Process"

Domain

"Customer
Acquisition"

Process

"Production"
Process

"Delivery"
Process

Is defined by… Composition Domain

Composition file

Composition Document

Base Domain

Domain file

DomainDocument

Composition Template

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 6 of 65

Common Objects Properties

Most ThinkComposer objects have the next properties for identification or documentation:

Name/Title: Name or Title of the object.

Summary: Summary of the object.

Pictogram: Graphic representation of the object. It is like an icon, however can be larger to be used as symbol.

Tech-Name: Technical-Name of the object. It should be unique and is intended for machine-level usage as code,

identifier or name for files/tables/programs. It can contain only characters allowed for file names.

Tech-Spec: Technical-Specification of the object. It is intended as a machine-level representation for

computation (i.e. for use as script, template, formula or other kind of expression).

Global ID: Global unique identifier of the object.

Description: Detailed description (rich) text of the object.

Versioning: Stores versioning information such as Creator, Last-Modifier, the respective change dates,

Annotation and Version Number, plus a Version Sequence number which is automatically incremented in each

change (considers also changes in the nested composite objects).

Note: You can set Versioning available for Ideas while declaring an Idea Definition (on the Domain), marking it as “Versionable”.

File Types

The next table shows the document types in relation to their file types:

Document Type Icon File Extension Mime-Type (for Windows file associations)

Composition

.tcom application/x-instrumind-thinkcomposer-composition

Domain

.tdom application/x-instrumind-thinkcomposer-domain

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 7 of 65

Compositions

A Composition is a rich-content document, identified and documented by a set of Common Object Properties, for

expressing an analysis, design, creation, knowledge or general thinking within a field/business Domain using

interrelated Ideas (Concepts or Relationships) for that purpose.

Ideas are visually expressed in Views with Symbols, Connectors and Shortcuts to them. Plus, through its

Composite-Content, Ideas can span multiple composability depth levels. The Composition is said to be “flat”

when only the main/root view is present.

Consider the next image, showing a multilevel Composition structured to model an “Aircraft”:

Note: This is just a representative image, of a multilevel Composition structure, showing its composite Ideas as nested diagrams.

In the example you can see the parts of the aircraft and how they are composed. Plus, a Shortcut is established

at different levels between two parts (the cockpit, which is also exposed as part of the fuselage), this allows the

reuse of Ideas by referencing them instead of making copies.

Views

A View is the visual surface on which the diagrams are created. Every Composition has an initial main View,

which is the root of the arbitrary compositional hierarchy it may have. It has the standard Common Objects

Properties and capabilities of pan (scroll), zoom (scale), show a grid to allow the easy editing of its content, plus

optional background brush/color and image.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 8 of 65

Ideas

An Idea is either a Concept or a Relationship, being a common abstraction to refer to them. They have a set of

properties about their visual appearance, the information they contain and their interrelations. Idea types are

defined by declarative objects called Idea Definitions, being them either Concept Definitions or Relationship

Definitions depending on the intended usage. The underlying definition of an Idea determines its initial visual

appearance and the details it can contain (attachments, links and tables).

As other objects, all Ideas have the Common Object Properties available to identify and document them.

By having all these properties under a common base, Concepts and Relationships can be as simple or powerful

depending on the needs of the particular situation. They can be extended with more details or with a composite-

content hierarchy under each one. This is a strong difference with other tools, where concepts/topics are no

more than simple symbols and relationships/associations are no more than just lines.

Consider the next Composition diagram example, where a fast food “Combo” product is briefly explained with

its ingredients:

As you can see, each Concept includes a Pictogram (or Icon) and one, the “French Fries”, also show a couple of

Details: Its Summary property and a “Sample Photo” image. Plus, the Relationships describe how the ingredients

are combined.

Composition: Max Hamburger Combo

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 9 of 65

That “Max Hamburger Combo” Composition is based on the next illustrated Domain:

Now, the next diagram explains how the exemplified Idea Definitions and Ideas are related:

Then, in the Idea Definitions section, that vision will be discussed again in further detail.

Domain: Fast-Food Cuisine

Concept Definitions Relationship Definitions

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 10 of 65

Symbols

Ideas can have a Symbol as its whole Visual Representation when they are Concepts (the Symbol is the “Body” of

the Concept), or as part of it when they are Relationships (the Symbol is the “Central/Main-Symbol” of the

Relationship, which is in the middle of its Connectors).

The Symbol structure
has the parts shown in
the next illustration.

The parts are:

Markers area: This zone shows any Markers that the symbol may have appended.

Symbol: This is the body of the Symbol, composed of the Representative Shape plus Title/Subtitle and the

Pictogram areas. Also, is called “Header” to differentiate it respect the “Details Poster”.

Details Poster: Is an expandable/collapsible area to show Details, also can expose a mini-view of the Composite-

Content inside the represented Idea. It can be “hanging” (with a triangular visual appendix pointing to the

symbol) or directly joined. Each Detail area has a Content zone exposing whatever is stored or referenced, plus a

Heading zone to show the Caption entitling it and an expander for the Content.

Also, Symbols may expose its Idea Definition name on top o it, plus some Indicators
as visual cues about hidden content. They are shown in the next illustration.

The current Symbol Indicators, aside from the Shortcut one, are:

 Related Origin Ideas: Appears when hiding/collapsing related Ideas, which are origins of this one, plus

their intermediate Relationships.

 Related Target Ideas: Appears when hiding/collapsing related Ideas, which are targeted by this one,

plus their intermediate Relationships.

Composite-Content: Appears when the Idea has been extended with other Ideas composing it; therefore

exists an underlying View as the root for that Composite-Content.

Detailed Content: Appears when the Idea has Details present (Attachments, Links, Tables or Custom-Fields).

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 11 of 65

Shortcuts

A Shortcut is a reference from a local Symbol to a target Idea in a remote area, such as a different View where
that target is located. Also, it can be located in the same View of the target, but at a distant position (for
avoiding long connectors crossing the View), or as intentional visual duplicate (called “visual synonyms” in other
tools).

You can identify a Shortcut Symbol by the “ ” link indicator icon located in its bottom
left corner, such as in the next example.

It is a good practice to have Shortcuts instead of, for example, making copies of an Idea, because the
represented semantic content remains the same.

Details

A Detail is a piece of content appended to an Idea to enrich it. The available kinds of Details are: Attachments,

Links and Tables, plus Custom Fields which are a simplified Table. They can be Designated either transversally,

for the Idea Definition (Domain) level when it is required to appear for all Ideas of the same kind, or locally, at

the Idea (Composition) level, when is for non-anticipated cases.

Consider the next example:

As you can see, all symbols have the same Details (defined on their common Idea Definition): A Link to the

“Summary” property, other Link with the “Website URL”, a Table with the “Chemical Composition” and an

Attachment with the “Photo Sample”. In addition, the “Wollinger” beverage Idea has also a specific Attachment

called “Required Accessory”, which only belongs to that particular Idea.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 12 of 65

For a better understanding of how Details are implemented, consider the next diagram.

By designating Details at the Idea Definition level, you create a standardized set of details which each Idea,

created from that Definition type, must have.

In the next sections, the currently available detail types will be exposed plus the detail designations.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 13 of 65

Attachments

An Attachment is an arbitrary embedded object, obtained from external source, such as: image, video, data file,
etc. Currently, only Images and Text can be displayed when shown in the Symbol's Details Poster, however any
file type can be stored as attachment.

Links

A Link detail (not to be confused with Relationship Link) is a reference or pointer to an object, which may be

reachable from the tool by invoking an external one. There are two types of links:

- External: References an object outside the Composition, such as a Web site/page, Folder or File.

- Internal: Points to a property of the Idea being detailed, therefore the Symbol can show properties other

than Name/Title or Tech-Name on its Details Poster.

By default, the Summary property is linked to every Idea Definition, just to satisfy the common need of showing

it in the diagram.

Tables

A Table is a container of structured information, composed of one or more Records (also called “rows”) of the

same type. Each Record has a set of Fields (also called “columns”) which store individual data items.

Note: The terms “Record” and “Field” were chosen, instead of “Row” and “Column”, to avoid confusion when visually transposing a Table on

the diagram (where rows become columns and vice versa).

The structure of a Table is specified by a Table-Structure Definition, where each Field is named, typified and

described with other attributes. That vision is expressed in the next diagram.

Custom-Fields

All Ideas have a limited set of internal properties (or Fields), such as Name/Title and Summary. However, you

can create your own “Custom” Fields according to your specific needs. They are defined in the same way as

Table Structures and are shown and edited as a single-record Table (see the “Editing Custom-Fields” section).

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 14 of 65

Detail Designations

A Detail Designation is the assignment or declaration of a detail, for a particular purpose, using a proper name

and a set of attributes about its visualization. Consider the next example:

The available properties for designate the details are:

- Designator: Gives the Name/Title to the detail, plus Summary and Pictogram that describe it.

- Structure: Relevant only for Table details, assigns the Structure which constitutes it.

- Is Displayed: Indicates that the detail will be shown in the Details Poster. This can be changed with the

expander (presented as a little triangle icon) shown together with the Name/Title.

- Show Title: Indicates that the Name/Title will be shown over the detail in the Details Poster.

- Properties for Table details…

o Multi-Record: Indicates whether the grid will show multiple records, else only the first one.

o Layout: Visual style of the grid. Options are:

 Conventional: Shows records on rows (one upon the other, in the vertical axis) and fields on columns (side

by side, in the horizontal axis).

 Simple: Shows a simple list of records on rows (one upon the other, in the vertical axis) and just the

assigned Label-Fields.

 Transposed: Shows fields on rows (one upon the other, in the vertical axis) and records on columns (side by

side, in the horizontal axis).

o Field Titles: Indicates whether to display the Field Titles.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 15 of 65

Concepts

A Concept is an Idea subtype, which constitutes a concrete object that can be associated to others through

Relationships. It is visually represented by a Symbol shaping its body. Each Concept type is described by a

Concept Definition. Concepts have all the properties and features of Ideas, plus a few ones about Automatic

Creation (see the “Creating Concepts” section). The main difference with Relationships is that Concepts are

designed to represent individual objects, not to link them.

Relationships

A Relationship is an Idea subtype, which constitutes an association between Ideas, connected using Links,

forming a nexus. Its visual representation has one Central or Main Symbol shaping its body, which maybe

hidden, and as many Connectors as needed in order to represent the Links to/from/with the related Ideas. Each

Relationship type is described by a Relationship Definition.

Relationships can link Ideas in several combinations. A few cases are exemplified in the next diagrams.

Concept to Concept:

Concept to Concept (Hiding Central/Main Symbol):

This is a “Simple” Relationship, because one Idea can be related to
only one other.

Concept to multiple Concepts:

Here the “Character” concepts are said to be Companions among
themselves (sometimes called Siblings), because both are Targets of
the same Relationship.

Multiple Concepts to one Concept:

Here the “Actor” concepts are said to be Companions among
themselves (sometimes called Siblings), because both are Origins
of the same Relationship.

Concept to Relationship (which also could be Relationship to
Relationship):

Concept to itself (Self/Auto-Reference):

Concept related to Concept, without direction:

Unlinked/isolated Relationship:

This can happen when copying a Relationship, for later append
the links to the related Ideas.

Note: The graphic symbols and connectors used, plus their colors and styles, are just for this example and may vary depending in the

definitions of the underlying Domain and/or the particular settings the user wants to make.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 16 of 65

Directionality

Relationships, depending in their ability to relate Ideas with a sense of direction, can be of these kinds:

o Directional: Most Relationships are of this type. They relate Ideas from an origin to a target, or with a

similar sense of direction. Example:

Typical Directional relationships are: “Is a”, “As”, “Belongs to”, “Goes To”, “Sends”, “Controls”, “Associated

with”, “Represents”, “Implements”, “Better than”, “Builds”, etc.

o Non-Directional: They relate Ideas with a sense of participation or other common affiliation, without

direction. Example:

Typical Non-Directional Relationships are (for when relating same level Ideas): “Members”, “Players”,

“Marriage”, “Siblings”, etc.

Relationship Links

A Link, or Role Based Link (not to be confused with Link Detail), is a part of a Relationship which makes a nexus

to a related Idea, by implementing a Link-Role. A Relationship between N Ideas has at least N Links, even when

linking the same Idea twice (for Self/Auto-Referencing Relationships).

Depending on the Directionality of the Relationship, the Link can implement…

- For Directional Relationship: An Origin Link-Role from the Idea that originates that Relationship, and

implement a Target Link-Role to the Idea that Relationship points.

- For Non-Directional Relationship: Only a Participant Link-Role for the Ideas sharing that Relationship.

If the Relationship is not defined as Simple, there can exist more than one Link per Link-Role (i.e.: multiple

Origins or multiple Targets). Else, only two links can exist: a single origin and a single target.

Also, a Link can have an optional Descriptor, with the usual Common Object Properties, in order to let the user

describe it with further detail.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 17 of 65

Connectors

A Connector is the visual representation of a Link. It is formed by a Line, straight or bent, and a Plug joined to

the connected Symbol, typically pointing from/to the Symbol's center (not considering its Details Poster) unless

using precise pointing. The next diagram shows its structure:

In “Simple” Relationships (those that can link an Idea to only one other) which have their Central/Main-Symbol

hidden, they appear like a single line as in the next diagram:

A Connector can also show Labels over it, with information about what it represents (the underlying Link-Role,

its Definition and Variants). Learn more about that in the Working with diagram Views section.

Link-Roles

A Link-Role is the purpose of the nexus expressed by a Link, based on its Link-Role Definition and Directionality,

plus Variants for specialize further more that nexus. For example, a Relationship called “Sending Message” could

have an Origin Link-Role called “Sender” and a Target Link-Role called “Receiver”. Also, the Target Link-Role

called “Receiver” can have two Variants: “Single” and “Multiple”. This can be better seen in the next diagram:

Notice the Labels shown with the name of the used Link-Role Definitions of each Link, “Sender” and “Receiver”

in this case, enclosed in square brackets. They also can show the name of the Variant and a possible Descriptor:

The way of declaring Link-Roles and associate Variants with the available Plugs, is explained in the Link-Role

Definitions section.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 18 of 65

Markers

A Marker (sometimes called “Marking”) is a simple visual classifier, such as a “Tag” or “Sticker”, defined by a

Marker Definition. It can be just a graphic icon or also can contain a Descriptor, with the usual Common Object

Properties, to detail its meaning.

The next diagram shows two Markers appended to an Idea's Symbol, where:

-The “ ” (Red Tag) Marker is used to denote a “Hot” product, as defined by
its Marker Definition, and has no Descriptor in this particular Idea.

- The “ ” (Gold Star Aware) Marker is used to denote a “Top” product and
has a Descriptor indicating that is “Tasty” (shown in a label for its Title/Name).

Complements

A Complement is a visual object for enhancing, by appending text and graphics, the objects of a diagram View.

 They are not a relevant semantic objects like an Idea (Concept or Relationship), therefore cannot be linked to

other objects, have details or any other kind of rich-content despite some of them may be visually attached to

Symbols.

The currently available Complements are exposed in the next sections.

Legend

A Legend Complement shows the Idea types used in the target diagram View, plus some Domain information as

exposed in the next lines:

Domain: Name/Title of the underlying Domain on
which the Composition is based.

Summary: Summary of the Domain.

Concepts: Used Concepts on the target View.

Relationships: Used Relationships on the target View,

including multiple Role Variants.

Versioning Information:

Creator: User who created the Domain.

Creation: Instant of the Domain creation.

Last Modifier: Last user who changed the Domain.

Modification: Instant of the last Domain change.

Sample

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 19 of 65

Info-Card

An Info-Card Complement shows information about the Composition and target View. It has:

Composition: Name/Title of the Composition.

View: Name/Title of the target View.

Summary: Summary of the Composition.

Versioning Information:
Creator: User who created the Domain.
Creation: Instant of the Domain creation.
Last Modifier: Last user who changed the Domain.
Modification: Instant of the last Domain change.

Sample

Image

An Image Complement is a free “floating” image used
as Illustration or Background.

If you need to link to/from an Image, better use a
Concept, assign its Pictogram and set the “Use
Pictogram as Symbol” on its Symbol Format Definition.

Note: Images can only be manipulated from their borders, because
they can be used as background for other visual objects. See the
Working with Complements section to learn more.

Sample

Text

A Text Complement is a free text, with formatting
attributes, used as Title or Label.

Sample

Stamp

A Stamp Complement is like a Text Complement, but
rotated and enclosed in a rounded-rectangle in order to
appear like a rubber stamp.

Sample

Note

A Note Complement is also like a Text Complement,
but enclosed in a “sticky note” shape.

Sample

http://en.wikipedia.org/wiki/File:BurgerKingFood.jpg

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 20 of 65

Callout

A Callout is like a Note, but attached to a Symbol with
a pointing appendix.

Sample

Quote

A Quote is like a Callout, but representing something
said by the pointed Symbol.

Sample

Group Region

A Group Region is a rectangular area, appended
under a target Idea Symbol, which serves as a
background grouping boundary of visual objects
dependents on that Idea.

When the target Idea Symbol is moved, the Group
Region is moved along with it. However, the Group
Region can be resized individually. In the Working
with Complements section it is further detailed.

Sample

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 21 of 65

Group Line

Similar to a Group Region, a Group Line is a line
appended under a target Idea Symbol, which serves
as a background thin area to group by-intersection
visual objects dependents on that Idea.

When the target Idea Symbol is moved, the Group
Line is moved along with it. However, the Group Line
can be resized individually and its axis (vertical or
horizontal) can be changed. In the Working with
Complements section it is further detailed.

Sample

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 22 of 65

Domains

A Domain is a declarative document, containing a set of object definition and rules, describing a particular

business or field of knowledge, which later will be expressed in Composition documents. These definitions

declare graphic properties, information schemas, rules of associativity and other useful descriptors, therefore

forming a simple yet expressive Custom Language.

Users can create their own Domains or use the preexisting ones provided with the product, including the most

little one, the “Basic Domain”, which only has one Concept and one Relationship.

Now, consider the next example: Register a recipe for a classic fast-food meal.

With these simple ingredients and combinations definitions, belonging to the world (specialized domain) of

food, we can document recipes and meals.

Is defined by…

Composition: Max Hamburger Combo

Domain: Fast-Food Cuisine

Concept Definitions Relationship Definitions

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 23 of 65

Idea Definitions

An Idea Definition is either a Concept Definition or a Relationship Definition; it defines set of properties about

types of Ideas (Concepts or Relationships) that will be created in Compositions.

Reconsider the next sample diagram, shown previously in the Ideas section, explaining how Idea Definitions and

Ideas relate.

As it can be seen, the Composition objects (the “Tasty-Max Combo” in this case) are individual Concepts or

connecting Relationships, each one based on its declarative Concept Definition or Relationship Definition,

respectively, belonging them to the base Domain (“Fast-Food Cuisine”). Therefore, your Ideas can have a

semantic description, as simple or complete as you want, not being only symbols and lines flying around.

Both, Concepts Definitions and Relationships Definitions share a set of common features and capabilities, so for

example the objects they describe (the final Concepts and Relationships) can be composed (have a whole

diagram inside them), have details (attachments, links and tables) and be shown with customizable visual styles.

The next sections will discuss about them.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 24 of 65

Properties

In addition to the standard Common Object Properties, Idea Definitions have the next properties:

Is Composable: Indicates that the derived Ideas can be composed of others, within a whole view/diagram

contained inside.

Is Versionable: Indicates whether the defined Ideas can maintain versioning information.

Representative Shape: Geometric shape illustrating the Idea definition, to be exposed as the visual symbol of

the represented Ideas (either the body symbol for Concepts or the central symbol for Relationships).

The currently available shapes are:

Note: A “<None>” shape also exists for use as non-existent symbol (usual in classic Concept Mapping relationships).

Precise Connect by default: Indicates to connect from/to precise aimed positions inside the Symbol, by default,

else from/to the Symbol center. Anyway, you always can perform a precise connect by pressing [Ctrl] while

creating a Relationship or re-linking one.

Has Group Region: Indicates whether the derived Ideas are created with a Group Region complement (a

boundary) appended.

Has Group Line: Indicates whether the defined Ideas are created with a Group Line complement (like a 'life line')

appended.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 25 of 65

Can Automatically Create Related Concepts: Indicates whether the Ideas of this type will automatically create

related Concepts in editing, by pressing [Enter], [Tab] or dropping Concept Definitions over them (so, you must

“bring to front” the target if it is under other one).

Can Group Intersecting Objects: Indicates whether the Ideas of this type will group objects intersecting its

symbol or Group Region (which, by default, group objects fully inside them).

Can Automatically Create Grouped Concepts: Indicates whether the Ideas of this type will automatically create

grouped Concepts when linking a Relationship into an appended Group Region/Line.

Automatic Grouped Concept Definition: Definition of the Concept to be automatically created onto an

appended Group Region/Line.

Cluster: Cluster to which this Idea-Definition is associated (used for better organization/grouping of the

Definitions).

Brushes

A Brush is a style for painting visual content applying colors, gradients and other attributes. Currently, the

available properties are:

Property Sample
Multiplicity: Determines the quantity of colors used, which can
be one of these…

o None: The brush is absent, therefore transparent.
o Single color: Only one solid color.
o Double gradient colors: Two colors with intermediate

nuances between them.
o Triple gradient colors: Three colors with intermediate

nuances between them.

Single color (red)

Double gradient colors (red to yellow):

Triple gradient colors (red to yellow to blue):

Orientation: For gradient colors, it indicates whether the
painting is in the horizontal or vertical axis.

Axis changed to vertical:

Transparency/Opacity level: Specifies the percentage of
transparency or opacity to apply.

Transparency/Opacity set to 50%:

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 26 of 65

Text-Formats

A Text-Format is a set of attributes defining the way text is drawn as visual content. Currently, the available

properties are:

- Font: Type-face style of the text. Depends on the fonts installed in your Windows OS.

- Size: Dimensions of the text (8 to 256)

- Style: Options for alter the text presentation:

o Bold

o Italic

o Underline

o Strike-Through

- Alignment:

o Left

o Center

o Right

o Justified (text aligned to right and left with intercalated spaces to get an homogeneous presentation)

Color brush: Brush applied to the text (see the previous section about Brushes). This enables you to even create

multicolored text, like the next sample:

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 27 of 65

Symbol Format Definition

A Symbol Format Definition is owned by an Idea Definition and declares the graphic style properties for Symbols

(and their possible Details Posters) of Ideas based on that Idea Definition. The format is applied at creation time,

but later it also can be changed individually while editing (custom formatting). Its properties are:

Property Sample
Show Global Details First: Indicates whether to show first
the global/shared details (those declared on the Idea
Definition), else the local/exclusive details (those of a
particular Idea) are shown first.

In this case, only the last detail (“Required Accesory”) is
designated for the “Wollinger” beverage, the previous ones
are for all the beverages.

Subtitle Visual Disposition: Indicates the Vertical
positioning of the Subtitle (which can be the Name or Tech-
Name) respect the Title. Options are:

- Before
- After
- Hidden

The subtitle “Economic_Sectors” (Tech-Name) is shown after
the title.

Use Name as main Title: Indicates whether to use the
Name as main title hence the Tech-Name as subtitle, else
the Tech-Name as main title and the Name as subtitle.

Title is “Economic_Sectors” (Tech-Name) and the subtitle
(hidden) is the Name. This is the usual case when
diagramming Tables, Classes or other Computing related
stuff.

In-Place Editing is Multiline: Indicates whether the in-place
editing of the symbol main title is multiline, so it accepts
[Enter] inside.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 28 of 65

Property Sample
Pictogram Visual Disposition: Indicates the Horizontal or
Vertical positioning of the Pictogram respect the
Title/Subtitle in the visual symbol. Options are:

- Right (default)
- Left
- Top
- Bottom
- Hidden

Note: Pictogram is shown only when present.

Pictogram is shown at the Top of the symbol.

Use Pictogram as Symbol: Show the Pictogram instead of
the Symbol. The title (and subtitle) will be shown over it.
This is useful to place your own Representative Shape,
instead of the predefined available ones.

Use Definitor Pictogram as Empty-Default: Indicates to use
the Pictogram of the Definition when that of the Idea is
empty.

<no sample>

Initial Width: Initial width of the symbol, which may be
adjusted if “Snap to Grid” is on and “Fixed Width” is off.

<no sample>

Initial Height: Initial height of the symbol, which may be
adjusted if “Snap to Grid” is on and “Fixed Height” is off.

<no sample>

Fixed Width: Indicates that the symbol has a fixed (initial)
width, hence the user cannot resize it.

<no sample>

Fixed Height: Indicates that the symbol has a fixed (initial)
height, hence the user cannot resize it.

<no sample>

Initially Flipped Horizontally: Indicates that the symbol is
created flipped on its horizontal axis.

<no sample>

Initially Flipped Vertically: Indicates that the symbol is
created flipped on its vertical axis.

<no sample>

Tilted: Indicates that the symbol is created tilted 90°
clockwise (flip it, to change orientation).

As Multiple: Indicates that the symbol will be initially
shown as multiple ones stacked.

Opacity: Opacity factor for the element. (0=Transparent).

Note: Transparency is the inverse equivalent of Opacity.

Opacity is set to 0.50 (half transparent) for the format of the
“Ketchup” Idea.

Main Background: Brush for the main background of the
object.

Line Brush: Foreground brush of the contour lines.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 29 of 65

Property Sample
Line Dash-Style: Dash style of the lines. Options are:

- Dash
- Dash-Dot
- Dash-Dot-Dot
- Dot
- Solid (default)
- Segmented

Segmented Line style.

Line Thickness: Thickness of the lines.

Line of Thickness=3.

Details properties…

- Separate with Lines: Indicates whether to insert a
separator line between shown Details.

- Poster is Hanging: Indicates whether the Details
Poster appears separated and hanging from the
head with a triangular hook, else appears joined.

- Heading Foreground: Brush for the foreground of
the Detail heading (and its expander), where the
Designated Name/Title of that Detail is shown.

- Heading Background: Brush for the background of
the Detail heading.

- Caption Foreground: Brush for the foreground of
the Captions (only applies for Field names).

- Caption Background: Brush for the background of
the Captions (only applies for Field names).

- Content Foreground: Brush for the foreground of
the Content (only applies for text and Field values)

- Content Background: Brush for the background of
the Content (only applies for text and Field values).

Note: These brushes define colorization for background objects
(rectangular frames) and foreground lines (for Tables). The brushes
for text are defined in the respective Text-Formats, not here.

Here, the first Symbol is shown with its Details Poster
hanging, and the second has it joined.

The next exaggerated illustration is to show, with precision,
which are the described brushes.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 30 of 65

Property Sample
Group Region/Line properties…

- Background: Brush for a Group Region
Complement fill background.

- Foreground: Brush for a Group Region
Complement line foreground.

- Dash: Dash style of the Group Region/Line.
- Thickness: Thickness of the Group Region/Line.
- Top-Border Region Place: Initial placement for the

top-border of the Group Region, respect its owning
Symbol.

Notice that the Region was placed as Right Inward respect
the “Fabrication” symbol.

Text Formats of the Symbol: Exposes the Text Format
properties for the next items:

- Title: Word/Phrase text for the main name or title.
- Subtitle: Word/Phrase text for secondary naming

(such as an alias, tech-name or other relevant
data).

- Detail Heading: Detail level Heading, such as the
name of a table.

- Detail Caption: Detail level Caption, such as the
name of a table field.

- Detail Content: Detail level Content, such as data
values of a table.

- Extra: Word text for use as decorator, such as
classification data (not currently in use).

- Paragraph: Abundant text for description or
summary (not currently in use).

Details Definitions

A Detail Definition is the same as a Detail Designation, that assigns a properly described Detail (Attachment, Link

or Table), with the difference that is used to pre-define, pre-declare or anticipate a detail that all the Ideas,

based on the owner Idea Definition, will (or should) have.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 31 of 65

Output-Templates

Useful for file/code generation, an Output-Template is a specification for generate files, in an External Language,

from Compositions content. The templates themselves are declared using a Template language, referencing

properties from the Composition Information Model.

By default, ThinkComposer will create some initial Templates, for generating Text and XML output files, in all

Domains. Plus, some Domains have extra templates for their specialized output needs (like the Data-Model and

Class Diagram, having SQL and C# output, respectively).

Depending on the generalization or precision intended, the Output-Templates can be defined at two levels:

Domain's templates: Declarations of text templates, at global scope, considering…

- Composition templates: Declares templates for files to be generated for the root of the Composition.

This is useful to generate either files that contain the whole Composition generated content or unique

central files (e.g.: “readme.txt”, “app.config”, “create-db.sql”, “main.cs”, etc.).

- Concepts base templates: Declares templates for files to be generated from Composition Concepts, all

producing the same format, regarding their particular Concept Definition. They can be extended by

individual Idea Definition's (of Concept Definition kind) templates.

- Relationship base templates: Declares templates for files to be generated from Composition

Relationships, all producing the same format, regarding their particular Relationship Definition. They can

be extended by individual Idea Definition's (of Relationship Definition kind) templates.

- Idea Definitions' templates: You can define text templates associated to individual Idea Definitions,

therefore allowing the specialization of file generation per Idea Definition types. Also, these templates

can extend those of their base kinds (Concepts or Relationships templates) of global scope.

Please consider the next sample Composition…

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 32 of 65

Based on that sample, the next table shows the resulting output from the declared Templates.

Declaration Level Sample Template Output Result
Domain templates

Composition templates [Flowchart]
Name: {{ Name }}
Author: {{ Version.Creator }}
[End-Flowchart]

Generated Composition file:
[Flowchart]
Name: Sample for Templates
Author: nestor
[End-Flowchart]

Concepts templates [Node]
Name: {{ Name }}
[End-Node]

Generated Concept files:
[Node]
Name: Start
[End-Node]
…
[Node]
Name: Accept Code
[End-Node]
…
[Node]
Name: Is Valid?
[End-Node]
…
[Node]
Name: Show Result
[End-Node]
…
[Node]
Name: Finish
[End-Node]

Relationship templates <None>

<None>

Idea Definition
 (of the 'Process' Concept Definition)

[Process]
Name: {{ Name }}
Summary: {{ Summary }}
[End-Process]

Generated Concept file:
[Process]
Name: Compute Result
Summary: Use the entered Code to
calculate the proper result.
[End-Process]

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 33 of 65

Concept Definitions

A Concept Definition is an Idea Definition subtype, which describes types of Concepts to be created based on it.

Therefore, they have all the properties an Idea Definition has, plus the next ones about Automatic Creation

Parameters:

Property Sample
Definition of Concept to Create:
Definition of the Concept to be
automatically created.

<no sample>

Associating Relationship Definition:
Definition of the Relationship to associate
Concepts with the automatically created
ones.

<no sample>

Positioning Mode: Indicates the ways to
accommodate the symbols of
automatically created Concepts. The
available options for tree positioning are:

- Horizontal Alternated: Horizontal tree,

with nodes alternating at two rows on
top and down sides.

- Vertical Alternated: Vertical tree, with
nodes alternating at two columns on
left and right sides.

- To Bottom: Tree with nodes to the
Bottom direction.

- To Right: Tree with nodes to the Right
direction.

- To Up: Tree with nodes to the Up
direction.

- To Left: Tree with nodes to the Left
direction.

Concept “Sci-Fi Universes” with its automatically created children in a
vertically alternated tree (also radial):

Positioning is Radial: Indicates to position
automatically created Concepts around in
a radial (semi elliptical) style.

Concept “Comics” with its automatically created children in a radial way (to
the right):

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 34 of 65

Relationship Definitions

A Relationship Definition is an Idea Definition subtype, which describes types of Relationships to be created

based on it. Therefore, they have all the properties an Idea Definition has, plus the next ones:

Property Sample
Is Simple: Indicates that only one target and one source
Links can be established.

Hide Central/Main-Symbol When Simple: Hides the
Central/Main-Symbol when the Relationship is Simple.

Show Name if Hiding Central/Main-Symbol: Indicates to
show Relationship name, in a simple label, when hiding the
Central/Main-Symbol.

Link-Role Definitions

A Link-Role Definition declares the purpose and constraints of all Links implementing it. By the Directionality

nature of the linking, a Link-Role can be of one of two types:

- Origin/Participant: When a derived link is the Origin in a Directional Relationship, or when is a Participant in a Non-

Directional Relationship (where the linked Ideas are associated in equality).

- Target: When a derived link is the Target in a Directional Relationship.

The properties that describes and constraint how the Links, derived from it, are:

Relationship is Directional (only for the Target Link-Role Definition): Indicates that the derived Relationships will

be Directional (with both, Origin and Target roles), else will be Non-Directional (only with the Participant role).

Name/Title: Identification for the Link-Role Definition.

Summary: Description of the Link-Role Definition.

Allowed Variants: Set of Variants (declared by Variant Definitions), available for multi-selection, to indicate

which of these can be used for linking. Also, for each selected Variant, a Connector Plug can be assigned to be

the visual representation of it. Go to the Link-Roles section to learn more.

Currently, the available plugs are:

Note: A “<None>” plug also exists for use when the line itself connects to/from the symbol.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 35 of 65

Linkable Idea Definitions: Set of Idea Definitions, available for multi-selection, to indicate which of these can be

linked to/from/with. Also, exists the alternative option “All Idea-Definitions are linkable” (selected by default).

This is useful when you want to link certain types of ideas to other that make sense. For example, you may want

to associate “ships have passengers” and “passengers live-in houses”, but no “ships live-in houses”.

Connectors Format Definition

A Connectors Format Definition is owned by a Relationship Definition and declares the graphic style properties

for Connectors, of any Role, of Relationships based on that Relationship Definition. The format is applied at

creation time, but later it also can be changed individually while editing (custom formatting).

Its properties are Opacity, Main Background (for the Connector's Label), Line Brush, Line Dash-Style and Line

Thickness, which are the same as those of the Symbol Format Definition but applied to the Connector's lines.

Plus, the next specific properties are also available:

- Label Link Variant: Indicates to label the Link (role) with the Variant name over the Connector.

- Label Link Definitor: Indicates to label the Link with the Definition name over the Connector.

- Label Link Descriptor: Indicates to label the Link with the Descriptor name over the Connector (if exists).

Variant Definitions

A Variant Definition declares a Variant (see the Link-Roles section to learn more), available to be assigned in a

Link-Role Definition. It is simply described by the standard Common Object Properties.

The initial set of provided Variants are:

- “Link”: General-purpose linking, which is the selected by default.

- “1..1”: Multiplicity of one-only occurrence (e.g.: “a child has only one mother”).

- “0..1”: Multiplicity of zero-or-one occurrence (e.g.: “a ship can have none or one captain, no more”).

- “1..N”: Multiplicity of one-or-unlimited occurrences (e.g.: “a mother can have one or many children”).

- “0..1”: Multiplicity of zero-or-unlimited occurrences (e.g.: “a city can have zero or undetermined semaphores”).

Marker Definitions

A Marker Definition declares a Marker available to be appended to an Idea. It is simply described by the

standard Common Object Properties.

By default, there are a lot of predefined Markers in a Domain. However you can change them or create new

ones (will be appended in the “User Defined” category).

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 36 of 65

Table-Structure Definitions

A Table-Structure Definition declares how Tables derived from it are constituted. It is described by the standard

Common Object Properties, a rich-text Description and the Structure, in turn composed of:

- Field Definitions: Declares the fields that all derived Table Records must have. Each declared by the

standard Common Object Properties, a rich-text Description and the following properties:

o Hide in Diagram: Indicates that the field values must be hidden in the diagram View.

o Field Type: Data type of the values to be stored in the derived fields. It constraints what information can

be entered in fields. Currently, the available data types are:

Data Type Description Examples

Text Accepts simple plain Text values (i.e. for names
or codes), with a limit of 255 characters.

Product Name

Text-Long Accepts long plain Text values (i.e. for
summaries), with a limit of 50,000 characters.

Description of the many features of the
product

Number Accepts Numeric values (up to 10 integer digits,
with 5 decimals, positive or negative).

-247.51, 301.29, -500.3

Positive Accepts Positive values (up to 10 integer digits,
with 5 decimals, positive only).

247.51, 301.29, 500.3

Integer Accepts Integer values (up to 15 integer digits,
with 0 decimals, positive or negative).

-247, 301, -500

Positive-
Integer

Accepts Positive Integer values (up to 15 integer
digits, with 0 decimals, positive only).

247, 301, 500

Date Accepts Date values

Dec-21-2011

Time Accepts Time values

14:35:27

Date-Time Accepts Date-Time values

Dec-21-2011 14:35:27

Switch Accepts only one of two values: Yes or No (which
can be interpreted as true/false, on/off, etc.).

Yes, No

Idea
Reference

References a Composition Idea. Field “Previous Position” references the
Idea “R&D Manager”, for the “CEO”
Position, in an Organizational Chart.

Table-Record
Reference

References a Record of a Base Table. Field “Unit of Measure” references the
Record “Oz - –unce”, in the Table “Units”.

Table Contains a nested Table. Field “Studies” contains a Table having
“University”, “Degree” and “Year” fields.

Picture Stores a photograph or graphic representation.

A product image.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 37 of 65

o Source Base Table: Table of predefined available Records, from which…

 Select the one to be referenced. This is valid only when the Field Type is “Table-Record

Reference”. See the Base Tables section to learn more. Or, …

 Select a Record from which a value can be obtained into the target field. This is valid

only when the Field Type is “Text” or any Numeric. By default, it selects the defined

Label field or the first compatible.

o Idea Referencing By: If set, indicates the property used to Reference Ideas from this field. Available only

when the data-type of the field is “Idea Reference” or “Text” (in this case, the Idea is referenced by its

containment route, e.g.: “\acme company\sales area\mail delivery”).

o Table-Structure: Assigns the Table-Structure Definition, either referencing an already existent one or

locally defining it, which specifies the fields to be stored in the contained (nested) Tables of this field.

- Label: Set of Field Definitions, which will be concatenated as Label for the derived Table Records. For

example, if a Table “Customers” is defined with Fields “Id”, “Name”, “Address”, “State”, etc… the Label

could be “Id” + “Name”. It is useful when showing a Table Record, to avoid expose all the fields.

By default, each Domain is created with a “Standard” Table-Structure for General purpose, having ID, Name and

Description properties.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 38 of 65

Base Tables

A Base Table is just a detail Table, at the Domain level, which stores a set of predefined Records to be

referenced from Tables created in the derived Compositions. As each Table, they have a designated name and a

declaring Table-Structure Definition upon which is based.

Consider the next illustration:

As you can see in the “Chemical Composition” Detail Table, each “Unit” Field references a Record in the “Units

of Measure” Base Table and its Label is just the “Code” Field.

External Languages

An External Language represents a type of structured text files, usually implementing an industry-standard or

custom format, intended to be consumed outside ThinkComposer. Later, the content of Compositions can be

merged into generated files, based on Output-Templates of these languages.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 39 of 65

Application Guide

Setup

Requirements

Modern Windows based PC computers are capable of executing ThinkComposer, as long as they meet the next

requirements:

Component Requirement

Processor x86-compatible at 2.0 GHz or more

Memory 2 GB of RAM or more

Disk Space 500MB free

Operating System Windows 7, Vista, XP (SP 3) or new versions compatible with Windows Presentation Foundation (WPF)

Video Card VGA compatible with minimum resolution of 1024x768 pixels, 1600x1200 or more is recommended

Plus, the Microsoft .NET Framework 4.0 must be preinstalled. If not already present in your PC, you can
download it from...

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17851

Install and Uninstall

You can download the latest versions of the product and documentation from…

http://www.thinkcomposer.com/Home/Download

The installer guides you thru a few steps to complete the setup and has no relevant options, except you can

choose to install the product only for the current user or for all the users of the target machine.

For uninstall the application, just go to the Windows Start Menu, then (All) Programs, then “Instrumind

ThinkComposer” and click the “Uninstall.bat” program.

Version Update

Version is checked on each start. If not up to date, the application asks if you want to download and install the

new version (if so selected, the new installer will be downloaded and started while the application quits).

 It is also possible to update from the “Version Update” button in the “About” window.

License Activation

After installation, the application remains in “Trial” mode for 30 days, and then expires. For upgrade to a new

License, you must register it in the “Register License” window by either loading a license file or pasting a license

key from the clipboard.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=17851
http://www.thinkcomposer.com/Home/Download

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 40 of 65

User Interface

ThinkComposer is a visual tool designed for modern desktop PC workstations and advanced laptop computers,

capable of display high-definition graphics in wide screens. It takes advantage of the features provided by the

Windows Presentation Foundation (WPF) technology.

Main Window

The Main Window of the application is shown in the next illustration, indicating its parts:

Menu Toolbar: Area exposing buttons, lists or other controls, which execute the commands of the application.

It is divided in two sections: “Project” for the global actions and “Compose” for those related to the editing of

the current Composition.

Toolbar Collapse/Expand Pin: Toggles between collapsed or expanded state of the whole Menu Toolbar.

Toolbar Scroller: Displaces the content of the Menu Toolbar “Compose” section when space is insufficient.

Quick Toolbar: Set of command buttons always visible, for fast access even when the Menu Toolbar is collapsed.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 41 of 65

Content Tree: Nested list of the Ideas (Concepts and Relationships) of the Composition. It can be used to go-to a

specified Idea, by opening its containing View, or to drag and drop it on the current View to create Shortcuts.

Click the “ ” button to alternately sort by Name or Creation instant. Enter text in the “Find” box, and press

[Tab] to find Ideas having the specified text in their name (they will be selected).

Interrelations Panel: Shows the interrelations of the View's pointed Idea, including a “Pointed by…” super-tree

(hierarchy of Ideas pointing to the selected one) and a “Pointing to…” sub-tree (hierarchy of Ideas pointed from

the selected one).

View Area: Shows and edits the content of the main (root) diagram View of the Composition, or one of its

nested composed Ideas.

Concepts Palette: Shows the available Concept Definitions, defined in the base Domain of the Composition, for

creating new Concepts in the diagram View by drag and drop. Double-click for edit the Definition. Click the “ ”

button to create a new Definition.

Relationships Palette: Shows the available Relationship Definitions, defined in the base Domain of the

Composition, for creating new Relationships in the diagram View by drag and drop. Double-click for edit the

Definition. Click the “ ” button to create a new Definition.

Markers Palette: Shows the available Marker Definitions, defined in the base Domain of the Composition, for

creating new Markers in the diagram View by drag and drop. Double-click for edit the Definition. Click the “ ”

button to create a new Definition.

Complements Palette: Shows the available Complements, for create in the diagram View by drag and drop.

Status Message Area: Shows messages about the current application parameters, plus the commands being

performed and their success of failure to execute.

Pointed Object Indicator: Shows a description of the diagram View's pointed object (that under the moving

mouse pointer, not necessarily the selected one).

Context Help: Shows appropriate help tips about how to manipulate or use the object pointed by the mouse.

Document Selector: Shows a list of the currently opened documents (Compositions or Domains), which the user

can select to change.

Zoom Slider: Shows and changes the scale/zoom on which the current diagram View is displayed.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 42 of 65

Working with Compositions

Typically, you start your work creating a new Composition based on a predefined Domain. For that purpose, the

next window is provided:

You can choose one of the Domains available or, if none is appropriate for what you want, then select the “Basic

Domain”, which will start the Composition based on the most simple and elementary Domain (with just one

Concept and one Relationship defined), so you can extend and customize it for your specific purpose later.

Also, you can choose to start with the Composition template included in the selected Domain (if any), else the

Composition will start empty.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 43 of 65

Working with diagram Views

Editing Symbols

When creating Ideas (Concepts or Relationships) they have a Symbol for showing its Name/Title (*), which can

be edited directly by the next set of controls:

The specific functions of each of these controls and areas are:

- Edit Button: Opens the standard Edit Properties window.

- Related Ideas Button: Expands/collapses the Symbol related targeted Ideas sub-tree. Press [Alt-Left] to do the

same over the origin Ideas super-tree.

o Example:

- Composite-Content Button: Opens, in a new tab on the View Area, the contained Composite-Content View of the

underlying Idea of the Symbol.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 44 of 65

- Details Poster Button: Expands/collapses the Details Poster.

- Switch Composite/Details Button: Toggles between showing Details (default) or the Composite-Content View in

the Details Poster.

o Example:

- Append Detail Button: Shows a menu for selecting the detail kind to create: Link, Attachment or Table.

- Resizing Dot: Resizes the Symbol while dragging with the [Mouse-Left/Normal-Button] pressed.

- Edit In-Place Area: Click it to directly edit the underlying Idea Name/Title. Consider the next keyboard based

behavior:

o If the symbol's Name/Title is not configured as multi-line, then press [Enter] to accept the text. To insert a

new-line within (therefore making a multi-line text) press [Alt]+[Enter].

o If the symbol's Name/Title is already configured as multi-line, pressing [Enter] will insert a new-line within

the text. Press [Ctrl]+[Enter] to finish the edit.

o Press [Tab] to accept the entered text, or press [Shift]+[Tab] to insert a tab character.

o Press [Esc] to discard the entered text.

- Detail Designator: Shows/edits the name given to the associated detail. For Tables, also allows to change the base

Table-Structure.

- Detail Expander: Expands/Collapses its associated detail content.

- Change Detail Content Area: Reassigns what object is stored or referenced as detail content. For Links enables the

change of the type and address of the referenced object, for Attachments allows the change of the stored file (not

its content), for Tables presents the editing grid.

- Access Detail Content Area: Presents/edits the detail content depending on its type. For Links goes to the stored

address, for Attachments invokes the associated application in the Operating System, for Tables presents the

editing grid.

- Any other area: Moves** the Symbol while dragging with pressing the [Mouse-Left/Normal-Button]. Also, press

[Ctrl] to include the related Target Ideas sub-tree and [Shift] to include the related Origin Ideas super-tree. Plus, on

Relationships, pressing [Right-Alt] will lock the position of the Symbol (therefore no automatic repositioning will be

performed as result of moving the connected Symbols of that Relationship).

*: The symbol implements the visual body (for Concepts) or the central/main symbol (for Relationships), except for “simple” Relationships

hiding its central/main symbol (in that case no symbol is shown).

**: Also, the selected objects (symbols or complements) can be moved by pressing the arrow keys (up, down, left and right), using steps of

View's Grid size (press [Ctrl] to force steps of 1 pixel, and [Shift] to multiply those steps by 4). This ignores the View's "Snap to grid" property.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 45 of 65

Creating Concepts

Drag the selected Concept Definition, from the respective Palette, and drop it over the diagram View Area. Then,

just after the Symbol (geometric shape) of the new Concept is created, an edit-box will appear for “edit in-place”

the Name/Title of the Concept. It can be single-line or multi-line (accepting new lines to be created pressing the

[Enter] key), as declared in the “In-Place Editing is Multiline” property of the Symbol Format in the Concept

Definition. Also, you can always press [Alt]+[Enter] to create a new-line in the text, and always press

[Ctrl]+[Enter] to finish the input.

If the Concept Definition has active the “Has Group Region”, then a new Group Region (boundary) will be

appended under the just created Symbol.

Click the [Mouse-Right/Alternate-Button] to cancel the Concept creation and let the pointer ready to select

objects or to drop/create other type of objects (Relationships, Markers or Complements).

Automatic Creation: This feature allows the fast automatic creation of Concepts on the diagram View, by…

- Dropping a Concept Definition (selected from the respective Palette) over an existing Concept (*), or…

- Pressing [Enter] while a Concept (*) is selected to create a new child. Subsequent pressing of the [Enter]

key will continue adding siblings of the currently targeted Concept.

- Pressing [Tab] while a Concept (*) is selected to create a new child.

*: The behavior of the automatic creation is determined by the Concept Definition of the targeted Concept. Go to the Concept Definitions

section, and see the “Automatic Creation parameters” to learn more.

Creating Relationships

Drag the selected Relationship Definition, from the respective Palette, and drop it over an existing Idea(*), then

move the mouse and you will see an arrow starting from the Symbol center of that pointed idea indicating that a

new Relationship is being created. Now you can either point (click over) the View, which will create the

Relationship central/main Symbol (**) starting the creation of a new link, or point to an already existent Idea (*),

which will create the Relationship central/main Symbol between the two Ideas.

If the target Idea's Definitor has unmarked the “Precise Connect by default” property, then the connector will

point to the target Idea's symbol center, else it will point exactly where you aimed. Anyway, you can always do a

precise pointing by pressing [Ctrl] while creating a Relationship connector or re-linking one.

After the initial Connector has been created, and if the base Relationship Definition is not “Simple”, a new

Connector will start its creation from the Relationship central Symbol. You can click the [Mouse-Right/Alternate-

Button] to cancel that new Concept creation and let the pointer ready to create a new Relationship.

Like Concepts, Relationships have the “edit in-place” feature for easy editing of Name/Title upon creation. Also,

they can have a Group Region appended, although this is very rare to be required for Relationships.

*: Because Concepts and Relationships are both Ideas, you can relate/link Concepts with other Concepts or Relationships, also Relationships

with Relationships. See the Relationships section to learn more.

**: The central/main Symbol of a Relationship can be hidden if the base Relationship Definition is declared with the “Simple” and “Hide

Central/Main Symbol when Simple” properties activated. See the Relationship Definitions section to learn more.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 46 of 65

Extending or Modifying Relationships

Extending Relationships: You can create a new Connector from the Symbol of an existing Relationship by:

- Dragging the connecting arrow, emerging from the central Symbol, while keeping pressed the mouse

button. Do not depress the mouse button or the “Edit In-Place” feature will be triggered.

- Drag the same Relationship Definition, from the respective Palette, plus dropping on the Relationship

central Symbol and dragging the emerging connecting arrow, while keeping pressed the mouse button.

Modifying Relationship Linking Connectors: An existing Connector can be modified in the next ways:

- Edit the Link Descriptor: Do a mouse double-click over the Connector.

- Remove the Connector: Select the Connector while pressing [Shift] (a “ ” icon will be shown) or press

the [Del] key. If the Relationship connects only one Symbol to another, then the whole Relationship will

be deleted, else just the selected Connector.

- Re-Link or reassign the Connector to/from other Symbol: Drag the Connector from its connecting point

(a “ ” icon will be shown), and point to the new selected target or origin Symbol.

Note: When only precise positioning is allowed, then the “ ” icon is shown.

- Bend the Connector: Drag the Connector from its center (a “ ” icon is shown over it). Also you can

move the center of a “Simple” Relationship hiding its central/main Symbol (a “ ” icon is shown).

- Straighten (unbend) the Connector: While pressing [Ctrl], click over the center of the bent Connector (a

“ ” icon will be shown).

- Cycle through Link-Role Variants: While pressing [Alt], click over the Connector to change to the next

available Link-Role variant, if any (a “ ” icon will be shown).

Adding new Origin Connectors: Drag the connecting arrow, emerging from the central Symbol, while pressing

[Left-Alt] into the desired new origin Idea; or drag and drop the same Relationship Definition type (from the

Palette) over the new origin Idea (this will start the connecting pointer arrow) and then point to the desired

“multi origin” Relationship symbol. Of course, this works only when the Relationship is not “simple” and has its

Symbol visible.

Note: In case you want to create a new Relationship related from another Relationship (which is not “simple” nor hiding its central symbol),

instead of extending the first one, you can press [Right-Alt] while dragging the connecting pointer arrow and then select the desired target.

Converting Ideas

Sometimes you may realize that an Idea, or a bunch of them, should not be based on their original Definition.

Then you can reassign that base Definition with the “Convert” command, which allows you to select a new

Definition, plus automatically reassigning the symbol and linking connectors (for Relationships).

Note: Assigned details which were designated in the original Idea Definition remains referencing it, so if they are changed (e.g. redesignated

with a name change), that modification will be reflected on the details of the converted Ideas.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 47 of 65

Assigning Markers to Ideas

Drag the selected Marker Definition, from the respective Palette, and drop it over an existing Symbol for append

a new Marker. Optionally, press [Ctrl] while dropping, to add a descriptor.

Creating Complements

Drag the selected Complement, from the Complements Palette, and drop it on the diagram View. Depending on

the kind of Complement, the behavior at creation or editing varies:

- Text: It allows you to edit in-place the text to be contained.

- Image: Shows the file selection dialog for setting the image. This Complement is designed to work as

background for others; therefore it only can be manipulated from its borders.

- Callout and Quote: You must drop it over an existing Symbol, and then you can edit its text.

- Note: It allows you to edit in-place the text to be contained.

- Stamp: It allows you to edit in-place the text to be contained.

- Info-Card: From this object you can access the Composition properties editing window.

- Legend: From this object you can access the Domain properties editing window.

- Group Region: This object is appended to an already existent Symbol. It can be resized independently,

but its movements are attached to the assigned Symbol. It works like a tray: when moved, all objects

over it are moved along too. Only its background and line brush colors can be changed.

- Group Line: Similar to a Group Region, but with only one resizable dimension depending on the current

axis (vertical, initially). Its axis can be changed with the “Change axis” option of the context-menu.

Creating Shortcuts

Drag an Idea from the Content Tree, and drop it into the diagram View, or copy an Idea (or group of them) and

then click the Paste as Shortcut button.

Note: For Relationships, only their central/main Symbol is referenced by the Shortcut, not its connectors. Also, Shortcuts are not generated to

reference simple Relationships with its central/main Symbol hidden.

Selection, Pan and Zoom

Selecting Objects: Drag the mouse while pressing [Mouse-Left/Normal-Button]. This will temporarily generate a

segmented rectangle. All visual objects which completely are inside that rectangle will be marked as selected.

Panning: Drag the mouse while pressing [Mouse-Right/Alternate-Button]. Roll the [Mouse-Wheel] to pan

vertically, and press [Shift] to do it horizontally. The context menu will be shown if no drag is performed, just

after depressing that mouse button.

Zooming: Press [Ctrl] and roll the [Mouse-Wheel] or move the Zoom Slider.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 48 of 65

Reporting

Composition's Report

For an open Composition you can generate a Report of its content, either in XPS/PDF format or as an HTML

document (along with a “.content” directory with associated files and nested HTML documents).

The next screenshots shows the first 4 pages of the report for the sample Composition template “WWII Allies –

Military Command”, which was based on the “Organizational Chart” domain:

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 49 of 65

Appendix A: Template language

This appendix documents the Template language used in ThinkComposer for describing Output-Templates,

which is the Liquid markup language plus some control markups. It references object properties, from the

Composition Information Model, to get the information and merge it with template text.

Note: You can find more information about the original Liquid markup language at:

https://github.com/Shopify/liquid/wiki/Liquid-for-Designers

Control markup

This kind of markup indicates to ThinkComposer what to do with the generated text, either while applying the

template text or prior to writing output files. It is prefixed with the “%%:” text.

Syntax Description Sample Template

FileName=<Template-Text> Sets the Name of the generated File.

- Must be at the first line, and use all of
it.

- If no FileName variable is declared,
then the generated files will be named
with the Idea's Tech-Name and a “.txt”
extension.

%%:FileName=Idea-{{ TechName }}.txt
[MyDocStart]
 My text
 [MyDocEnd]

[ExtensionPlace] Sets the position (in base Templates) where
extra text, from templates marked with the
“Extend Base Template” property, will be
included.

By default, if no extension place is specified,
the extra text is included at the end.

%%:FileName=Idea-{{TechName}}.txt
[MyDocStart]
 My text
 %%:[ExtensionPlace]
[MyDocEnd]

SubTemplate=<Identifier> Declares a subtemplate, encompassing the
next line until either another subtemplate
declaration or the end of the text.

- Useful as consumable/callable from
the template or itself (therefore a
recursive generation can be
implemented).

- The Identifier must be a simple text
(not a markup), unique within the
Composition.

- Use the 'inject' tag to apply it where
desired, passing a variable as its
information context.

- Assign the @@InjectionDepth internal
variable to a local variable to get the
nested levels count.

%%:FileName=Composition-{{TechName}}.txt
[MyDocStart]
Root: {{ Name }}
{%- inject 'TreeNodeReader' with This -%}
 [MyDocEnd]
%%:SubTemplate=TreeNodeReader
[NodeStart]
Node-Name: {{ Name }}
{% assign Depth = @@InjectionDepth %}
Nested-Level: {{ Depth }}
{%- for Idea in CompositeIdeas -%}
 {%- inject 'TreeNodeReader' with Idea -%}
{%- endfor -%}
[NodeEnd]

https://github.com/Shopify/liquid/wiki/Liquid-for-Designers

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 50 of 65

Output markup

An Output Markup declares text which may be generated into the output file, obtained from object properties

of the Information Model. They are enclosed between “{{“ and “}}”. The markup is an expression that may

contain just an object property name or a combination of properties and Filters, which are functions applied to

the resulting text at its left side.

This kind of markup can trim white spaces before or after it, by including a “-“ together with the curly braces at

the side to be trimmed. Also, the “-“ will suppress a new-line (line-break) placed just after the markup code.

Please consider the examples of the next table:

Sample Template Output

Title: {{ Name }} Title: My Composition

{{ Name }} is a {{ Summary | Upcase }}.

My Composition is a VERY EXPRESSIVE AND PRECISE DOCUMENT.

“{{ Name }}” has {{ Name | Size }} characters

“My Composition” has 14 characters

Name: {{- Name }}
Summary:
{{ Summary -}}
;

Name:My Compostion
Summary:
Very expressive and precise document;

Name/Summary: {{ Name -}}
/ {{- Summary -}}
;

Name/Summary: My Compostion/Very expressive and precise
document;

Filters

Filters are functions that take input text, plus parameters (if any), and produce output text. The input text for

filters is always located at the left side of its (case-sensitive) name preceded by a '|' character, whereas the

parameters (if any) are located at the right, after a semicolon.

The currently available filters are:

Filter Description Samples

Size Gets the size of an array, string or collection of
objects.
Note: Usable also as property (i.e.: Collection.Size)

Source: ['a', 'b', 'c']
Template: Items = {{ Source | Size }}
Output: Items = 3

Any Indicates whether an array, string or collection has
any content.
Note: Usable also as property (i.e.: Collection.Any)

AsChar Gets as character the specified code ('tab' or
'newline') or number (UTF-16).
Note: If no character can be interpreted, then the input is
returned.

Template: Hello{{ 'tab' | AsChar }}Dolly
Output: Hello Dolly

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 51 of 65

Filter Description Samples

ToBase64 Gets binary content, such as images and attached
files, in its Base-64 representation

ToUnformattedText Gets rich-text (in XAML format), such as from the
“Description” property, as simple unformatted text

ToPlainText Gets an arbitrary object, such as Detail's Content,
in its simple text representation

Capitalize

Capitalizes words in the input sentence

Template: {{ 'da vinci' | Capitalize }}
Output: 'Da Vinci'

Downcase Converts an input string to lowercase

Template: {{ 'da vinci' | Downcase }}
Output: 'da vinci'

Upcase Converts an input string to uppercase

Template: {{ 'da vinci' | Upcase }}
Output: 'DA VINCI'

First Gets the first element of the passed in array
Note: Usable also as property (i.e.: Collection.First)

Last Gets the last element of the passed in array
Note: Usable also as property (i.e.: Collection.Last)

Join Joins elements of the array with certain character
between them

Sort Sorts elements of the array

Map Maps/collects an array on a given property

Escape Escapes a string

EscapeOnce Returns an escaped version of html without
affecting existing escaped entities

StripHtml Strips html from string

StripNewlines Strips all newlines (\n) from string

NewlineToBr Replaces each newline (\n) with html break

Replace Replaces each occurrence

Template: {{ 'foofoo' | replace:'foo','bar' }}
Output: 'barbar'

ReplaceFirst Replaces the first occurrence

Template: {{ 'barbar' |
replace_first:'bar','foo' }}
Output: 'foobar'

Remove Removes each occurrence

Template: {{ 'foobarfoobar' | remove:'foo'
}}
Output: 'barbar'

RemoveFirst Removes the first occurrence

Template: {{ 'barbar' | remove_first:'bar'
}}
Output: 'bar'

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 52 of 65

Filter Description Samples

Truncate Truncates a string down to x characters

Truncatewords Truncates a string down to x words

Prepend Prepends a string

Template: {{ 'bar' | prepend:'foo' }}
Output: 'foobar'

Append Appends a string

Template: {{ 'foo' | append:'bar' }}
Output: 'foobar'

Minus Subtraction

Template: {{ 4 | minus:2 }}
Output: 2

Plus Addition

Template: {{ '1' | plus:'1' }}
Output: '11'

Template: {{ 1 | plus:1 }}
Output: 2

Times Multiplication

Template: {{ 5 | times:4 }}
Output: 20

DividedBy Division

Template: {{ 10 | divided_by:2 }}
Output: 5

Split Splits a string on a matching pattern

Template: {{ “a~b” | split:~ }}
Output: ['a','b']

Modulo Remainder

Template: {{ 3 | modulo:2 }}
Output: 1

Get Gets, from a Source object, the specified
Property by Tech-Name.

{% assign GrandTotal= Balance | Get:'Total' }}

GetIdeasDefinedAs Gets, from a Source collection of Ideas, those
based on Idea-Definitions having the specified
Tech-Names (separated by “;”).

{% assign Arachnids = Animals |
GetIdeasDefinedAs:'Spider;Scorpion' %}

GetElements Gets, from a Source collection of Elements
(IIdentifiableElement), those having the
specified Tech-Names (separated by “;”).

{% assign Giants = Planets |
GetElements:'Jupiter;Saturn;Uranus;Neptune'
%}

GetLinksByVariant Gets, from a Source collection of Role-Based
Links, those having Variants with Tech-Name
like those provided (separated by ';')

{% assign ZeroOrOneToMany = Links |
GetLinksByVariant:'0..N';'1..N' %}

SelectMany From a Source collection of items having a
property, which is also another collection, gets
the union of all the items of these collections.

{% assign AllSolarSystemMoons = Planets |
SelectMany:'Moons' %}

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 53 of 65

Tag markup

A Tag Markup declares processing instructions, which are not generated in the output file, but determine how

the text is generated. They names are case-sensitive and are enclosed between “{%” and “%}”.

This kind of markup also can trim white spaces before or after it, by including a “-“ together with the curly

braces at the side to be trimmed. Also, the “-“ will suppress a line-break placed just after the markup code.

The currently available Tags are:

Tag Description Samples

assign Assigns some value to a variable

{% assign code = '007' %}
{% for Agent in This['Agents'].Records %}
 {% if Agent.id == code%}
 Jimbo!
 {% endif %}
{% endfor %}

capture Block tag that captures text into a variable

{% capture MyGeneratedText %}
{{ Name }}: {{ Summary }}
{% endcapture %}

case

Block tag, it is the standard case...when block

{% case Name | Upcase %}
{% when 'OK' %}
 Correct
{% when 'N/A' %}
 Not-Applicable
{% else %} //
 Unknown
{% endcase %}

comment

Block tag, comments out the text in the block

{% comment %}
Template to generate custom XML
{% endcomment %}

for

For loop. Travels a collection, giving each
contained element into a named variable.

Related variables (available inside the block):
forloop.length: length of the entire for loop
forloop.index: index of the current iteration
forloop.index0: Like previous, but zero based.
forloop.rindex: how many items are still left?
forloop.rindex0: Like previous, but zero based.
forloop.first: is this the first iteration?
forloop.last: is this the last iteration?

{% for Detail in Details %}
 This is a detail of kind {{ Detail.Kind.Name }}
 {% if foorloop.last %}
 (this is the last element of the collection)
 {% endif %}
 {% if Detail.Kind.TechName == 'Table' %}
 {% for Record in Detail.Records %}
 Record's label: {{ Record.Label }}
 {% endfor %}
 {% endif %}
{% endfor %}

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 54 of 65

Tag Description Samples

if

Standard if/else block.

Logical operators:
==: true when both sides are equal
!=: true when both sides are different
and: true when both sides are true
or: true when at least one side is true
Note: Must separate operators and values (I.E.
“a==b” is incorrect, “a == b” is correct)

Collection operators:
contains: true when collection contains element
empty: true when collection has no elements

{% if Details.Size < 1 %}
 empty
{% else %}
 There are {{ Details.Size }} details.
{% endif %}

inject Inserts the content of a subtemplate in the
desired location, passing a variable as the
information context.

Useful to make recursive generation. See the
'SubTemplate' control markup for more info.

Optional modifiers (after the context variable):
keepindent: Stops deepening the indentation.
noindent: Supress the indentation.

{% for Child in CompositeIdeas %}
 {% inject 'ChildrenTemplate' with Child %}
{% endfor %}

…
{% inject 'MyTemplate' with Data keepindent %}

…
{% inject 'MyTemplate' with Remarks noindent %}

raw

Temporarily disables tag processing to avoid
syntax conflicts

{% raw %}
This {{ markup }} will not be processed
{% endraw %}

unless

Mirror of if statement

{% unless Name=='' %}
 Hello {{ Name }}
{% endunless %}

Note: The special character back-slash (“\”) must be escaped, writing it twice (“\\”), in order to be used in function parameters. For example,

instead of writing “{{ TechName | replace:'\','.' }}” you should write “{{ TechName | replace:'\\','.' }}”.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 55 of 65

Appendix B: Composition Information Model

This appendix documents most of the information model of ThinkComposer Compositions. It is intended to be

accessed for consumption via Output-Templates, declared using a Template language, so its information can be

merged with the template text and be exported as generated files.

Classes Diagrams

Associations

The next diagram represents the aggregation (“has a”) and composition (“is composed of”) associations of

exposed model classes:

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 56 of 65

Inheritance Hierarchy

The next diagram represents the inheritance (or “is a” associations) hierarchy of the exposed model classes:

Note: The IIdentifiableElement interface declares the Global-Id, Name, Tech-Name and Summary properties available in most

ThinkComposer objects.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 57 of 65

Special cases: Custom Fields, Details and Table data access

The Custom Fields, Details and Table Records data are easily accessible, using the special variables and syntaxes

shown in the next table:

Content Access Samples

Custom Fields

_['<A-Custom-Field-Tech-Name>']

The “_” property references the Custom
Fields record of the current Idea. It has a
Tech-Name based indexer to get individual
Custom Fields.

Standard Idea's Name:
Name: {{ Name }};

Alternative name (an alias) stored as Custom Field:
Also-known-as: {{ _['Alias'] }}

Details

This['<A-Detail-Tech-Name>']

The “This” property references the current
Idea. It has a Tech-Name based indexer to get
individual Details.

Detail having Attached text file:
{{ This['MyAttachment'] }}

Detail having a Table:
Count of records: {{ This['MyTable'].Records.Size }}

Table Records

RecordVariable.<A-Field-Tech-Name>, or
RecodVariable['<A-Field-Tech-Name>']

Having a Table-Record variable, enables you
to access their fields either directly or by its
Tech-Name based indexer.

Suppose a 'People' Table having 'Name' and 'Age'
Fields…

The {{ This['People'].Records.Size }} persons are…
{% for Person in This['People'].Records %}
 Name: {{ Person.Name }}; Age: {{ Person['Age'] }}
{% endfor %}

Domain's
Base Tables

<Domain>.BaseContentRoot['<Base-Table-
Tech-Name>']

Access a Domain variable, then reference its
'BaseContentRoot' property and get the
desired Base Table by its Tech-Name based
indexer.

From a Composition template…
{% for Unit in
CompositionDefinitor.BaseContentRoot['UnitsOf']
.Records %}
 Unit #{{ forloop.index }}: {{ Unit.Name }}
{% endfor %}

From an Idea template…
{% for State in OwnerComposition.
CompositionDefinitor.BaseContentRoot['States']
.Records %}
 {{ State.Code }}: {{ State.Name }}
{% endfor %}

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 58 of 65

Specification of Model Classes

The next table details the exposed model classes and their properties. Notice that classes may have an ancestor,

from which they inherit properties.

Name Type/Ancestor Summary

Attachment ContainedDetail Represents an arbitrary embedded object, obtained from external
source, such as: image, video, data file, etc.

AssignedDesignator Assignment<DetailDesignator> Attachment content designator

Designator AttachmentDetailDesignator Attachment designator.

Kind ModelDefinition Returns the kind of this detail.

MimeType String Detected MIME-Type when the attachment was loaded.

Source String Location-of/route-to the resource origin.

AttachmentDetailDesignator DetailDesignator Associates an Attachment definition to an Idea.

Composition Concept Semantic, informational and visual set of ideas, expressing
knowledge about a subject. This document or book is conformed by
the hierarchical nesting of containers (logical documents based on
a Composite Concept), starting from a root.

ActiveView View Active View of the composition.

CompositionDefinitor Domain Domain definition of this Composition.

Pictogram ImageSource Graphic representation of the object.

RootView View Initial and central View of the Composition.

UsedDomains EditableList<Domain> Collection of used Domains in this Composition.

ViewsPrefix String Prefix for naming related views of this document.

Concept Idea Concrete object, subtype of Idea, which can be associated to others
through Relationships.

ConceptDefinitor Assignment<ConceptDefinition> Concept Definition on which this Concept is based.

ConceptDefinition IdeaDefinition Represents the definition of a Concept type.

AncestorConceptDef ConceptDefinition References the ancestor Concept definition of this one.

AutomaticCreationConceptDef ConceptDefinition Definition of the Concept to be automatically created.

AutomaticCreationPositioningIsRadialized Boolean Indicates to position automatically created Concepts around in a radial
(semi elliptical) style.

AutomaticCreationRelationshipDef RelationshipDefinition Definition of the Relationship to associate Concepts with the
automatically created ones.

Pictogram ImageSource Graphic representation of the object.

ConceptVisualRepresentation VisualRepresentation Visually represents a Concept.

RepresentedConcept Concept Represented Concept by this visual element.

ContainedDetail [NONE] Represents an object stored as detail for an Idea (contained within
its DetailsContainer).

IsCustomDetail Boolean Indicates whether this detail is Custom, which means this was not
designated at the Idea Definitor, but into a particular Idea.

OwnerIdea Idea Container owning this Contained-Detail.

DetailDesignator MetaDefinition Base ancestor for the designators of detailed data.

Owner Ownership<IdeaDefinition, Idea> Owner of this table detail designator.

SubOwnerFieldDef FieldDefinition Optional Field-Definition sub-owning this detail designator.

Domain ConceptDefinition Unifies a set of metadefinitions about a business area, which rules
the creation of Composite-Content. This considers the definition of:
Graph schematization, visual representation and information
structures.

BaseContentRoot Concept Idea owning the Domain's predefined base-content (such as Base
Tables).

DefaultTableDef TableDefinition Table-Structure Definition used as the by-default for new Tables.

IdeaClusters EditableList<SimplePresentationElement> Simple clusters for grouping Idea Definitions on palettes (i.e. visually).

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 59 of 65

LinkRoleVariants EditableList<SimplePresentationElement> Predefined variants available for Link-Role Definitions (e.g.: Used for
declaring Multiplicities/Cardinalities).

MarkerClusters EditableList<SimplePresentationElement> Simple clusters for grouping Marker Definitions on palettes (i.e. visually).

OwnerComposition Composition Composition owning this Domain instance.

Pictogram ImageSource Graphic representation of the object.

ViewBackgroundImage ImageSource Image to be initially assigned to the View's background. If bigger than
500x500 then it is adjusted to fit in the View, else it is repeated/tiled.

FieldDefinition MetaDefinition Defines a table structure field.

ContainedTableDesignator TableDetailDesignator If set, stores or references the Table-Structure Definition declaring the
type of the Tables contained by the implementing Fields.

ContainedTableIsSingleRecord Boolean Indicates whether the contained-table, if set, has only one record, else is
Multi-Record.

HideInDiagram Boolean Indicates that the field values must be hidden in the diagram view.

IsRequired Boolean Indicates whether the field value must be stored or can be let empty
(null).

OwnerTableDef TableDefinition Table-Structure Definition owning this Field Definition.

StorageIndex Int32 Actual position, within the table record structure, where the values of this
field are located.

FormalElement UniqueElement Standard entity type, globally unique, with Name, Tech-Name,
Summary, Tech-Spec, plus rich-text Description and Version
information.

Description String Detailed description (rich) text of the object.

Name String Name or Title of the object.

NameCaption String Gets the Name for single-line display (without new-line characters).

Summary String Summary of the object.

TechName String Technical-Name of the object. Should be unique. Intended for machine-
level usage as code, identifier or name for files/tables/programs.

TechSpec String Technical-Specification of the object. Intended as a machine-level
representation for computation (i.e. for use as script, template, formula or
other kind of expression).

Version VersionCard Stores the versioning information of the object, such as Creator, Last-
Modifier, dates and version number.

FormalPresentationElement FormalElement Standard entity with identification, versioning and visual
representation.

Pictogram ImageSource Graphic representation of the object.

Idea FormalPresentationElement The most basic Composition element of the Instrumind's Graph
schema, from which Concepts and Relationships are descendants.
Combines on a single -derived- instance the attributes of Graph
existence, visual representation and information storage.

_ TableRecord Alias of the Custom-Fields record.

AssociatingLinks EditableList<RoleBasedLink> Collection of links which associate this Idea to a Relationship.

BaseKind ModelDefinition Gets the kind (Domain, ConceptDefintion or RelationshipDefinition) of the
definitor of this idea final instance type.

CompositeActiveView View Current active view of the composite Idea.

CompositeContentDomain Domain Domain which rules the content of this Idea.

CompositeDepthLevel Int32 Gets the level of compositional depth of this Idea.

CompositeIdeas EditableList<Idea> The collection of composing Ideas of this one.

CompositeViews EditableList<View> Views for contained children Ideas when this is composite.

DefinitionIsShared Boolean Indicates whether the assigned Idea definition is Shared (owned by its
Domain), or Local (owned by this Idea).

DescriptiveCaption String Short text describing the Idea.

Details EditableList<ContainedDetail> Collection of contained details.

HasDetailedContent Boolean Indicates whether the Idea has detailed content (tables, attachments or
non-internal links).

IncomingLinks IEnumerable<RoleBasedLink> Links targeting to this Idea.

IsComposite Boolean Indicates whether the Idea is composed of others, else is atomic.

LinkedFrom IEnumerable<Relationship> Incoming Relationships linking-to/whose-target-is this Idea.

LinkingTo IEnumerable<Relationship> Outgoing Relationships linked-from/whose-origin-is this Idea.

MainRepresentator VisualRepresentation Gets the primary Visual Representator of this Idea.

MainSymbol VisualSymbol Gets the Main Symbol of the primary Visual Representator of this Idea.

Markings EditableList<MarkerAssignment> Collection of assigned markers.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 60 of 65

OppositeOriginLinks IEnumerable<RoleBasedLink> Links, opposite to incoming-links and of the same Relationships, pointed
from origin Ideas.

OppositeTargetLinks IEnumerable<RoleBasedLink> Links, opposite to outgoing-links and of the same Relationships, pointing
to target Ideas.

OutgoingLinks IEnumerable<RoleBasedLink> Links originating from this Idea.

OwnerComposition Composition Composition owning this Idea.

OwnerContainer Idea Container owning this Idea, which is composing a dominant one.

RelatedFrom IEnumerable<Idea> Ideas pointing to this Idea (through incoming Relationships)

RelatingTo IEnumerable<Idea> Ideas pointed by this Idea (through outgoing Relationships)

SelfKind ModelDefinition Gets the kind (Composition, Concept or Relationship) of this idea final
instance type.

This Idea Returns this Idea (To support access to Details thru indexer).

VisualRepresentators EditableList<VisualRepresentation> Collection of visual representations for this Idea.

IdeaDefinition MetaDefinition Common ancestor for Metadefinitions about Concepts and
Relationships. It can have attached user-defined Information and
Visualization assignments.

AutomaticGroupedConceptDef ConceptDefinition Definition of the Concept to be automatically created onto an appended
Group Region/Line.

CanAutomaticallyCreateGroupedConcepts Boolean Indicates whether the Ideas of this type will automatically create grouped
Concepts when linking a Relationship into an appended Group
Region/Line.

CanAutomaticallyCreateRelatedConcepts Boolean Indicates whether the Ideas of this type will automatically create related
Concepts in editing (by pressing [Enter], [Tab] or dropping Idea
Definitions over them).

CanGroupIntersectingObjects Boolean Indicates whether the Ideas of this type will group objects intersecting its
symbol or Group Region.

CompositeContentDomain Domain If set, indicates the Domain which rules the content of the defined Idea.

ConceptDefinitions EditableList<ConceptDefinition> Collection of Concept definitions which are part of this one.

ClusterKey FormalPresentationElement Cluster to which this Idea-Definition is associated (used for better
organization/grouping of the Definitions).

CustomFieldsTableDef TableDefinition Definition of Custom-Fields (based on a Table-Structure Definition).

DefKind ModelDefinition Gets the kind (Domain, ConceptDefinition or RelationshipDefinition) of
this idea definition final instance type.

DetailDesignators EditableList<DetailDesignator> Collection of Detail Designators declared for this Idea definition.

HasGroupLine Boolean Indicates whether the defined Ideas are created with a Group Line
complement (like a 'life line') appended.

HasGroupRegion Boolean Indicates whether the defined Ideas are created with a Group Region
complement (a boundary) appended.

IsComposable Boolean Indicates whether the defined Ideas can be composed of others in a
whole view/diagram contained inside.

IsVersionable Boolean Indicates whether the defined Ideas can maintain versioning information.

OwnerDefinitor IdeaDefinition References the composite Idea definition owning this one.

Pictogram ImageSource Graphic representation of the object.

PreciseConnectByDefault Boolean Indicates to connect from/to precise aimed positions inside the Symbol,
by default, else from/to the Symbol center.

RelationshipDefinitions EditableList<RelationshipDefinition> Collection of Relationship definitions which are part of this one.

RepresentativeShape String Shape illustrating the definition, to be exposed as the visual symbol of the
represented Ideas.

TableDefinitions EditableList<TableDefinition> Collection of declared Table-Structure Definitions.

InternalLink Link References an internal property.

AssignedDesignator Assignment<DetailDesignator> Link assigned designator

Designator LinkDetailDesignator Internal-Link assigned designator.

Link ContainedDetail References an external object (such as: File, Folder, Web adress) or
an internal one (such as an Idea property).

Kind ModelDefinition Returns the kind of this detail.

TargetAddress String Address of the resource.

LinkDetailDesignator DetailDesignator Associates an Link definition to an Idea.

LinkRoleDefinition MetaDefinition Represents the definition of a Role Link.

AllowedVariants EditableList<SimplePresentationElement> Allowed link-role variants and related plug style for the relationship link
role.

AssociableIdeaDefs EditableList<IdeaDefinition> List of linkable idea definitions. If none is assigned, then all can be linked.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 61 of 65

MaxConnections UInt32 Number of maximum Ideas that can be linked by the role. Zero for
unlimited. The default is one.

OwnerRelationshipDef RelationshipDefinition Relationship definition owning this link role definition.

Pictogram ImageSource Graphic representation of the object.

RelatedIdeasAreOrdered Boolean Indicates whether the related Ideas for the relationship link role are free
or follows an order.

MarkerAssignment [NONE] Represents the assignment of a Marking to an Idea. Optionally, a
descriptor can be also associated.

Descriptor SimplePresentationElement Optional descriptor for the Marker.

MetaDefinition FormalPresentationElement Represents, at a metalevel of abstraction, the definition of the data
structure upon which create schema objects of a type.

MetaId Int32 Simple identifier for indirectly associate created objects with definitions.

ModelDefinition [NONE] Base class for the definition of model classifiers and their
members..

Name Int32 User-level name of the defined object.

TechName String Name of the defined object.

Summary String User-level description of the defines object.

Relationship Idea Association between multiple ideas, connected using link-roles,
forming a nexus.

DescriptiveCaption String Short text describing Relationship links.

IsAutoReference Boolean Indicates whether this represents an auto-reference for the connected
Idea (non-excluvise). This means that can exists links pointing from/to
another Ideas.

IsAutoReferenceExclusive Boolean Indicates whether this represents an exclusive auto-reference for the
connected Idea. This means that all links points from/to the same Idea.

Links EditableList<RoleBasedLink> Collection of implemented Links.

OriginIdeas IEnumerable<Idea> Gets the Ideas from which this Relationship is Originted (includes
Participants).

OriginLinks IEnumerable<RoleBasedLink> Links associating the origin (or participant) Ideas

RelationshipDefinitor Assignment<RelationshipDefinition> Relationship Definition on which this Relationship is based.

TargetIdeas IEnumerable<Idea> Gets the Ideas to which this Relationship is Targeted.

TargetLinks IEnumerable<RoleBasedLink> Links associating the target Ideas.

RelationshipDefinition IdeaDefinition Represents the definition of a Relationship type.

AncestorRelationshipDef RelationshipDefinition References the ancestor Relationship definition of this one.

HideCentralSymbolWhenSimple Boolean Hides the Central/Main-Symbol when the Relationship is defined as
Simple.

IsDirectional Boolean Indicates whether this relationship if from an origin to a target, else is
between equivalent participants.

IsSimple Boolean Indicates that only one target and one source Links can be established.

OriginOrParticipantLinkRoleDef LinkRoleDefinition Definition for the Origin/Source link role. This is the participant role in a
non-directional relationship.

Pictogram ImageSource Graphic representation of the object.

ShowNameIfHidingCentralSymbol Boolean Indicates to show the Relationship name when hiding the Central/Main-
Symbol.

TargetLinkRoleDef LinkRoleDefinition Definition for the Target/Destination link role. This has no use in a non-
directional relationship.

RelationshipVisualRepresentation VisualRepresentation Visually represents a Relationship.

RepresentedRelationship Relationship Represented Relationship by this visual element.

VisualConnectors IEnumerable<VisualConnector> Gets the visual connectors.

VisualConnectorsCount Int32 Gets the count of visual connectors.

ResourceLink Link References a resource, such as a file, folder or web address.

AssignedDesignator Assignment<DetailDesignator> Resource Link content designator

Designator LinkDetailDesignator Reseource-Link designator.

TargetAddress String Address of the resource.

TargetLocation String Location-of/route-to the resource.

RoleBasedLink UniqueElement Links a Relationship with a related Idea, following a Link Role
Definition.

AssociatedIdea Idea References the associated Idea of this link.

Descriptor SimplePresentationElement Optional description of this link.

OwnerRelationship Relationship References the owning Relationship.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 62 of 65

RoleDefinitor LinkRoleDefinition Related Link-Role Definition.

RoleVariant SimplePresentationElement Indicates the Link-Role Variant for this link.

SimpleElement [NONE] Basic entity type, globally unique, with Name, Tech-Name, Summary
and Tech-Spec.

Name String Name or Title of the object.

NameCaption String Gets the Name for single-line display (without new-line characters).

Summary String Summary of the object.

TechName String Technical-Name of the object. Should be unique. Intended for machine-
level usage as code, identifier or name for files/tables/programs.

TechSpec String Technical-Specification of the object. Intended as a machine-level
representation for computation (i.e. for use as script, template, formula or
other kind of expression).

SimplePresentationElement SimpleElement Simple entity having a visual representation.

Pictogram ImageSource Graphic representation of the object.

Table ContainedDetail Stores structured information, containing one or multiple data
records of the same type.

AssignedDesignator Assignment<DetailDesignator> Table designator.

Count Int32 Returns the count of contained Table-Records.

Definition TableDefinition Gets the designated Table-Structure Definition.

Designator TableDetailDesignator Table designator.

Kind ModelDefinition Returns the kind of this detail.

Records EditableList<TableRecord> Collection of records belonging to this Table.

RecordsLabel String Text representation of the Table's Records data (only the first 3 records).

TableDefinition MetaDefinition Defines a Table-Structure type.

FieldDefinitions EditableList<FieldDefinition> Collection of declared Field definitions of this Table-Structure Definition.

LabelFieldDefs EditableList<FieldDefinition> List of ordered field definitions used as Labels (for title usage).

OwnerDomain Domain Domain owning this Table-Structure Definition.

TableDetailDesignator DetailDesignator Associates Table-Structure Definitions to an Idea, Idea-Definition or
Field-Definition (Contained Table field type).

ContainedTableSubOwner FieldDefinition If set, references the Field-Definition sub-owner of a field contained
Table. IMPORTANT: In this case, the Owner must point to the related
Domain.

DeclaringTableDefinition TableDefinition Table-Structure Definition which declares the data structure of this Table.

TableDefIsOwned Boolean Indicates that the Table Definition belongs to the detail's owner (not
shared).

TableRecord [NONE] Groups variable data items that conforms a data entity, composing
a Table with others of the same kind.

Index Int32 Index of the record in the owner Table (one based, for users).

Label String Returns the record's Label: Text composed of the fields (definitions)
marked as being part of the Label in the Table-Structure Definition.

OwnerTable Table Table owning this table record

UniqueElement [NONE] Object with unique non-repeatable identity among others of any
kind.

GlobalId Guid Global unique identifier of the object.

VersionCard [NONE] Stores version control information for versionable objects.

Annotation String Comment in reference to edition activities performed or pending.

Creation DateTime Date-time of the creation.

Creator String Creator user name.

LastModification DateTime Date-time of the last modification.

LastModifier String Last modifier user name.

VersionNumber String Optional manual/external generated version number (i.e: 'major-
release.minor-release[.build[.revision]]')

VersionSequence Int32 Sequential number, starting from one. The real version number.

View FormalElement Visual representation of the Composite-Content of an Idea or
Composition.

BackgroundImage ImageSource Image to be shown at the Background (behind the diagram sheet, over
the background color). If bigger than 500x500 then it is adjusted to fit in
the View, else it is repeated/tiled.

GridSize Double Gets or sets the context Grid size (range: 2 to 20 pixels).

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 63 of 65

GridUsesLines Boolean Indicates that the context Grid should be based on Lines, else on Points.

IsOpen Boolean Indicates whether the content is presented/expanded or
hidden/collapsed.

IsOutlined Boolean Indicates whether the content is presented surrounded by a border.

OwnerCompositeContainer Idea References the Idea Composite Container owning this View.

PageDisplayScale Int32 Scaling percentage for displaying the view page.

ShowConceptDefinitionLabels Boolean Indicates whether to display Labels with the Concept Definition name
over the Concept.

ShowContextBackground Boolean Indicates whether to display the assigned Background.

ShowContextGrid Boolean Indicates whether to display the assigned Grid.

ShowIndicators Boolean Indicates whether to display Indicators over the Ideas.

ShowLinkRoleDefNameLabels Boolean Indicates whether to display Labels with the Link-Role Definitor name
over the Connectors.

ShowLinkRoleDescNameLabels Boolean Indicates whether to display Labels with the Link-Role Descriptor name
over the Connectors.

ShowLinkRoleVariantLabels Boolean Indicates whether to display Labels with the Link-Role Variant over the
Connectors.

ShowMarkers Boolean Indicates whether to display Markers over the Ideas.

ShowMarkersTitles Boolean Indicates whether to display the Title of the Markers over them.

ShowRelationshipDefinitionLabels Boolean Indicates whether to display Labels with the Relationship Definition name
over the Relationship.

ShowSmoothEdges Boolean Indicates whether to show smoth edges for the displayed shapes, else
they are displayed sharpened.

SnapToGrid Boolean Indicates whether the postioning of objects should be aligned to grid
points.

ViewSize Size Size of the View.

VisualCountOfFloatings Int32 Current count of visual floating content.

VisualLevelForBackground Int32 Maximum z-order level currently assigned for visual background content.

VisualLevelForRegions Int32 Maximum z-order level currently assigned for visual regions content.

VisualComplement VisualObject Individual visual object exposing attached information, such as
note, callout, legend and info-card.

BaseArea Rect Area of the figure.

BaseCenter Point Central position where the figure is displayed around.

BaseHeight Double Height of the figure bounds rectangle area, containing the actual
geometry which maybe is not rectangular.

BaseLeft Double Horizontal left position of the figure bounds rectangle area, containing the
actual geometry which maybe is not rectangular.

BaseTop Double Vertical top position of the figure bounds rectangle area, containing the
actual geometry which maybe is not rectangular.

BaseWidth Double Width of the figure bounds rectangle area, containing the actual geometry
which maybe is not rectangular.

Content Object Contained text or image.

Kind SimplePresentationElement Type of Complement implemented.

Target Ownership<View, VisualSymbol> Visual object targeted by this Complement.

VisualConnector VisualElement Makes a visual connection between two elements.

IntermediatePosition Point Intermediate optional position of the connector.

OriginEdgePosition Point Source edge-position of the connector respect the source symbol.

OriginPlug String Gets the plug type code for the origin side.

OriginPosition Point Source position of the connector.

OriginSymbol VisualSymbol Symbol where this Connector originates.

OwnerRelationshipRepresentation RelationshipVisualRepresentation References the owning relationship visual representator.

RepresentedLink RoleBasedLink References the represented Role Based Link.

TargetEdgePosition Point Destination edge-position of the connector respect the target symbol.

TargetPlug String Gets the plug type code for the target side.

TargetPosition Point Destination position of the connector.

TargetSymbol VisualSymbol Symbol pointed by this Connector.

VisualElement VisualObject Identifiable base ancestor for visual representators such as
symbols and connectors.

OwnerRepresentation VisualRepresentation References the owning visual representator.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 64 of 65

VisualRepresentation UniqueElement Groups Visual Elements to conform the exposed representation of
an Idea.

AreRelatedOriginsShown Boolean Indicates whether the related Origin representations are shown.

AreRelatedTargetsShown Boolean Indicates whether the related Target (and participant) representations are
shown.

DisplayingView View View showing this visual representation.

IsShortcut Boolean Indicates that this visual object points to an Idea contained outside the
current (Idea) Container.

MainSymbol VisualSymbol Gets the major symbol of this representation. The body symbol for
Concepts, or the main-symbol for Relationships.

RepresentedIdea Idea Represented Idea by this visual representation.

VisualSymbol VisualElement Base ancestor for visual symbols such as vector-based drawings,
images and texts.

AreDetailsShown Boolean Indicates whether the details are currently being shown on the view.

BaseArea Rect Gets the symbol's heading rectangle.

BaseCenter Point Central position where the symbol is displayed around.

BaseContentArea Rect Area for the content to be shown in the heading of the symbol.

BaseHeight Double Height of the symbol bounds rectangle area, containing the actual
geometry which maybe is not rectangular. For Concepts, this refers to the
body; for Relationships, this refers to the main-symbol.

BaseLeft Double Horizontal left position of the symbol bounds rectangle area, containing
the actual geometry which maybe is not rectangular. For Concepts, this
refers to the body; for Relationships, this refers to the main-symbol.

BaseTop Double Vertical top position of the symbol bounds rectangle area, containing the
actual geometry which maybe is not rectangular. For Concepts, this
refers to the body; for Relationships, this refers to the main-symbol.

BaseWidth Double Width of the symbol bounds rectangle area, containing the actual
geometry which maybe is not rectangular. For Concepts, this refers to the
body; for Relationships, this refers to the main-symbol.

Complements EditableList<VisualComplement> Attached visual complements, such as Callouts.

DetailsArea Rect Gets the symbol's detail poster area.

DetailsContentArea Rect Area for the content to be shown in the details poster of the symbol.

DetailsPosterHeight Double Current details poster height, even if not shown.

IsAutoPositionable Boolean Indicates whether this visual object can be positioned without explicit user
interaction.

IsHorizontallyFlipped Boolean Indidcates that the symbol is horizontally flipped.

IsVerticallyFlipped Boolean Indidcates that the symbol is vertically flipped.

OriginConnections EditableList<VisualConnector> List of originating connectors whose destination is this symbol.

OwnerRepresentation VisualRepresentation References the owning visual representator.

ShowCompositeContentAsDetails Boolean Indicates to show composite-content as (instead of) details.

TargetConnections EditableList<VisualConnector> List of targeted connectors whose origin is this symbol.

TotalArea Rect Gets the current content area, considering the Heading and Details (if
displayed).

TotalHeight Double Height of the symbol plus its details poster, if shown.

Note: The TableRecord class has dynamic properties/fields, based on the Field-Definitions created for its Table-Definition. For access them,

see the Special cases: Custom Fields, Details and Table data access section.

Also, the next classes can contain or reference data in the way described…

 EditableList<Item-Type>: Contains a collection of ordered items. Relevant properties:

o Count: Gets the current number of items.

 EditableDictionary<Key-Type, Value-Type>: Contains a collection of key-value pairs. Relevant properties:

o Count: Gets the current number of items.

 v1.5 Product Manual

© 2012-2013 Instrumind Software S.p.A. November 2013 Page 65 of 65

 Assignment<Key-Type, Value-Type>: References an object which may be local (owned by this instance), which implies

writing access, or external, thus having read-only access to it. Relevant properties:

o IsLocal: Indicates whether the object is locally owned.

o Value: Object referenced.

 Ownership<Global-Type, Local-Type>: Indicates ownership, Global (shared) or Local (exclusive), of the parent instance

and references an owner instance, which can be based on one of two possible types. Relevant properties:

o IsGlobal: Indicates whether the ownership is Global/Shared, else is Local/Exclusive.

o Owner:.Gets the owner as is stored.

 StoreBox<Content-Type >: Contains objects which requires conversion to/from a storable (i.e. to disk) format.

Relevant properties:

o Value: Object contained.

